SDZ PSC 833, the cyclosporine A analogue and multidrug resistance modulator, activates ceramide synthesis and increases vinblastine sensitivity in drug-sensitive and drug-resistant cancer cells.
نویسندگان
چکیده
Resistance to chemotherapy is the major cause of cancer treatment failure. Insight into the mechanism of action of agents that modulate multidrug resistance (MDR) is instrumental for the design of more effective treatment modalities. Here we show, using KB-V-1 MDR human epidermoid carcinoma cells and [3H]palmitic acid as metabolic tracer, that the MDR modulator SDZ PSC 833 (PSC 833) activates ceramide synthesis. In a short time course experiment, ceramide was generated as early as 15 min (40% increase) after the addition of PSC 833 (5.0 microM), and by 3 h, [3H]ceramide was >3-fold that of control cells. A 24-h dose-response experiment showed that at 1.0 and 10 microM PSC 833, ceramide levels were 2.5- and 13.6-fold higher, respectively, than in untreated cells. Concomitant with the increase in cellular ceramide was a progressive decrease in cell survival, suggesting that ceramide elicited a cytotoxic response. Analysis of DNA in cells treated with PSC 833 showed oligonucleosomal DNA fragmentation, characteristic of apoptosis. The inclusion of fumonisin B1, a ceramide synthase inhibitor, blocked PSC 833-induced ceramide generation. Assessment of ceramide mass by TLC lipid charring confirmed that PSC 833 markedly enhanced ceramide synthesis, not only in KB-V-1 cells but also in wild-type KB-3-1 cells. The capacity of PSC 833 to reverse drug resistance was demonstrated with vinblastine. Whereas each agent at a concentration of 1.0 microM reduced cell survival by approximately 20%, when PSC 833 and vinblastine were coadministered, cell viability fell to zero. In parallel experiments measuring ceramide metabolism, it was shown that the PSC 833/vinblastine combination synergistically increased cellular ceramide levels. Vinblastine toxicity, also intensified by PSC 833 in wild-type KB-3-1 cells, was as well accompanied by enhanced ceramide formation. These data demonstrate that PSC 833 has mechanisms of action in addition to P-glycoprotein chemotherapy efflux pumping.
منابع مشابه
Enhanced de novo ceramide generation through activation of serine palmitoyltransferase by the P-glycoprotein antagonist SDZ PSC 833 in breast cancer cells.
SDZ PSC 833 (PSC 833), a P-glycoprotein-targeted multidrug resistance modulator, sensitizes cancer cells to chemotherapy. Here we show that PSC 833 also potentiates the formation of ceramide. Because ceramide is a second messenger in chemotherapy-induced apoptosis, knowledge of the lipid pathways influenced by PSC 833 is of relevance. In intact MDA-MB 468 breast cancer cells, ceramide generatio...
متن کاملIn vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833.
The new nonimmunosuppressive cyclosporin analogue, SDZ PSC 833, is a very potent multidrug-resistance modifier. In vitro, it was shown to be at least 10-fold more active than cyclosporin A (Sandimmune), itself more active than verapamil, on most P-glycoprotein-expressing multidrug-resistant (MDR) tumor cell lines. In vivo, SDZ PSC 833 was tested in a few protocols of combined therapy with eithe...
متن کاملMultidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins.
A variant of the multidrug-resistant human sarcoma cell line Dx5 was derived by co-selection with doxorubicin and the cyclosporin D analogue PSC 833, a potent inhibitor of the multidrug transporter P-glycoprotein. The variant DxP cells manifest an altered phenotype compared with Dx5, with decreased cross-resistance to Vinca alkaloids and no resistance to dactinomycin. Resistance to doxorubicin ...
متن کاملThe multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A. Implications for drug-drug interactions and pharmacological activity of the main metabolite.
The metabolism of valspodar (PSC 833; PSC), which is developed as a multidrug resistance-reversing agent, was investigated to assess the potential for drug-drug interactions and the pharmacological activity of major metabolites. The primary metabolites of PSC produced by human liver microsomes were monohydroxylated, as revealed by LC/MS. The major site of hydroxylation was at amino acid 9, resu...
متن کاملRestoring uptake and retention of daunorubicin and idarubicin in P170-related multidrug resistance cells by low concentration D-verapamil, cyclosporin-A and SDZ PSC 833.
BACKGROUND Overexpression of the mdr-1 gene that codes for a 170 Kd transmembrane glycoprotein (P170) is a factor responsible for decreased cell sensitivity to anthracyclines and other drugs, and is related to treatment failure in acute leukemia and other tumors. Several agents, including verapamil and cyclosporine derivatives, can modify P170-related resistance in vitro and can be proposed as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 59 4 شماره
صفحات -
تاریخ انتشار 1999